
Scalable Firewalls for Simplifying Cloud Tenant Network Abstractions

Emily Marx
University of California Berkeley

Yichi Zhang
University of California Berkeley

Tenzin Ukyab
University of California Berkeley

Abstract

Cloud tenants frequently use workloads that span mul-
tiple regions in the cloud and require complex network
setup to connect all the regions. McClure et al. suggests
cloud providers reduce this complexity by presenting
tenants with a high-level virtual network API, rather than
a set of low-level virtual network components. However,
this requires cloud providers make all tenant endpoints
publicly routable but default-off. Currently, cloud tenant
endpoints are not publicly-routable, which reduces the
risk of DDoS attacks. Thus, generally the only firewalls
are at the endpoints. However, adding public addresses
for all tenant hosts makes the cloud network vulnerable
to an increased volume of resource-exhaustion attacks.
To mitigate this risk, we propose adding a firewall sys-
tem to each cloud point of presence (PoP), in addition
to the per-endpoint firewalls. A naive solution adding a
single firewall representing firewall rules for all the end-
points served by the PoP would not scale, so we propose
a more sophisticated system. This new system adds fire-
wall servers sharded by tenant to the PoP. The edge router
directs traffic to the correct firewall server; the most com-
monly used endpoint firewall rules are also cached in the
edge router. With a cloud network of size 1012 VMs, our
design has a 0.0004% rate of leaking disallowed network
traffic into the cloud network, with half the CPU usage
per tenant of the status-quo VPN tunnels.

1 Introduction

Cloud tenants frequently use workloads spanning multi-
ple physical locations in the cloud, such as on-premise
data centers and multiple regions across multiple cloud
providers. This requires tenants to configure virtual net-
works connecting these locations. An example of this
can be seen in Figure 1. This is a complex and expen-
sive task requiring significant manpower and expertise.
McClure et al. [16] suggests solving this issue by hav-

Figure 1: A tenant’s virtual network spanning multiple
cloud providers, regions, and an on-premise data center.

ing cloud providers abstract away the low-level building
blocks of virtual networks and only present cloud tenants
with a clean API to set up their networks. More details
of this API and abstraction can be found in [16].

The implementation of this API requires cloud
providers to make all tenant endpoints publicly-routable
but default-off, meaning endpoints can be accessed by
the entire Internet but traffic will be dropped unless it
is explicitly permitted by tenant. This introduces secu-
rity issues: The cloud network now has to support public
addresses for all tenant hosts, making the network vul-
nerable to an increased volume of resource-exhaustion
attacks.

Currently, this problem does not exist because end-
points are not publicly routable by default, as seen in
Figure 2. Virtual machines (VMs) that are made public
by the tenant have per-endpoint permit lists that the ten-
ant provides at the end-host. These per-endpoint lists are
implemented today by Security Groups (AWS), NSGs
(Azure), etc. However, relying solely on firewalls at
the endpoints leaves network resources vulnerable when



Figure 2: A single cloud provider currently has multiple
points of presence (PoPs) that route public traffic into
the cloud’s private wide area network (WAN), toward
regional data centers containing tenant virtual networks
and virtual machines (VM) protected by per-endpoint
firewalls (FW).

endpoints are publicly routable. Resource-exhaustion at-
tack traffic can infiltrate the cloud network and use up
expensive WAN bandwidth [13, 12, 11, 21].

Naively, software firewalls could be placed at every
cloud entry point, such as edge data centers or points
of presence, filtering traffic for all cloud tenants served
by the entry point. Unfortunately, current firewall im-
plementations such as Virtual Filtering Platform in Mi-
crosoft Azure [7] and Linux NetFilter would likely not be
able to handle the large number of rules. Each entry point
firewall would have to support O(number of endpoints×
number of external connections per end point), which
may be up to 1013 in the worst case.

Instead of a single firewall at each entry point, we pro-
pose a more scalable firewall system. This design adds
multiple software firewall servers to each entry point,
sharded by tenant. Network traffic incoming to the en-
try point will first arrive at the edge router. The edge
router will filter by destination address and direct traffic
to the firewall server in the entry point corresponding to
the destination tenant. These servers then apply the ten-
ant’s firewall rules and direct only permitted traffic over
the WAN. We evaluate the performance of this design
with respect to the number of rules per firewall server,
finding constant CPU usage and latency of classification,
and linear update latency. Additionally, we evaluate the
feasibility of this design in comparison to the VPNs pro-
vided by clouds today. With a cloud network of size 1012

VMs, our design has a 0.0004% rate of leaking disal-
lowed network traffic into the cloud network, with half

the CPU usage per tenant of VPNs.
This paper will be organized as follows: Section

1 describes the motivation and background; Section 2
presents related works; Section 3 explains the threat
model; Section 4 is a detailed description of the design;
Section 5 provides the evaluation of the system; Section
6 discusses the evaluation, as well as limitations and fu-
ture work; and Section 7 concludes.

2 Related work

2.1 Current Cloud Firewalls
This section will dive into the implementation of fire-
walls in clouds today, using as an example Microsoft’s
Azure cloud. Azure provides the Virtual Filtering Plat-
form (VFP) firewall [7]. VFP implements many network
tools, such as Ananta load balancing [17], ACLS, and
VNets. A tenant can deploy a firewall using Azure’s Fire-
wall utility.

VFP organizes its programming model into ports, lay-
ers, groups, and rules. Each port contains layers, which
are the stateful flow tables holding the rules. Rules are
the filtering condition and actions. Groups are entities
that manage and control rules within a layer.

VFP provides 4 classifier types to use for filtering: a
compressed trie, an interval tree, a hash table, and a list
[7]. The classifier used depends on the type of field in the
packet the classifier is filtering on. For example, tries are
used for CIDR IPs. Each data structure is optimized for
the set of field types it classifies. VFP runs classification
on each field in parallel and does not store a rule twice,
optimizing time and space.

VFP provides firewall capabilities that are sufficient as
a last line of defense for our endpoints. However, without
implementation of firewalls closer to the entry points of
the clouds, the cloud is vulnerable to resource-exhaustion
attacks if endpoints are made publicly routable. Using a
single VFP instance as an initial line of defense in the en-
try point would not scale for all the tenant host addresses.

Espresso [27] is Google’s edge routing infrastructure
that enables fast updating of Internet peering BGP FIB
rules and ACL rules at points of presence. Espresso cur-
rently implements firewalling via an online traffic analy-
sis for DoS detection. As DoS attacks are detected, rules
are inserted and removed from routers to stop the attack.
This paper will provide an offline solution to mitigating
DoS attacks that can be used to raise the barrier of attack
alongside an online solution.

2.2 Packet Classification Problem
The goal of packet classification is to classify packets by
applying a set of rules to the header fields of a packet.

2



The dimension d refers to the number of fields in the
packet P that are relevant to the classifier. Each rule R
specifies d regular expressions to check against each of
the fields in packet headers. The ith regular expression
of R, R[i], is checked against the ith field in the packet
header, P[i]. If there is an exact, prefix, or range match,
then the action, e.g. drop packet, forward packet, etc.,
specified for that rule is applied to that packet. If multi-
ple rules match the packet, then either the longest prefix
match or the highest priority rule is applied to the packet.

Packet classification is an old problem but is still im-
portant today due to its necessity in various applications
such as QoS, firewalls, and network traffic monitoring
and analysis. Classifiers are growing in size because
of the aforementioned applications and need to handle
higher throughput due to increasing line rate brought by
fiber optics. Therefore we need packet classification al-
gorithms with high throughput, low memory size, and
fast update time as the applications change state fre-
quently.

2.3 Ternary CAMs
A hardware solution to firewalls, also used for routing, is
Ternary Content-Addressable Memory (TCAM). CAMs
are a type of memory that can do line rate matching on
binary words. Routing and firewall rules are stored in a
match action table, where the match word is mapped to
an action, such as allow, deny, or forward to a specific
port. Ternary CAMs allow searches using three type of
bit matches: 0s, 1s, and *s (wild cards or “don’t care”).
A TCAM stores the match action table in a memory array
with decreasing order of priority. Input fields are checked
against all entries in the memory array in parallel, allow-
ing multiple entries to match. The address of the highest
priority rule is used to index into the action SRAM mem-
ory to get the action for that rule. TCAM is valuable for
its line rate classification capability; however, it is very
expensive and has a limited capacity since it uses a lot of
power and dissipates a lot of heat. For example, the Ju-
niper MX10000 router has 7 million TCAM entries and
can use up to 5500 W of power [1].

2.4 Bloom Filters
A Bloom filter is a space-efficient data structure used to
query set membership. Rather than storing the elements
of the set themselves, a Bloom filter stores bits represent-
ing them. Each element of the set is hashed using k hash
functions, each of which outputs a bit index to be set to
1. When querying, the query element is hashed with the
same k functions, and if all the resulting 1 bits are also 1
in the Bloom filter, the element may be in the set, but is
not guaranteed to be. However, if any of the 1 bits in the

query are 0 in the Bloom filter, the query is guaranteed
not to be in the set. The likelihood of false positives de-
pends on the size of the set, the size of the Bloom filter,
and the number of hash functions.

Lookup time in a Bloom filter is constant with respect
to the number of elements in the set, and depends only
on the number of hash functions. This property, along
with their space efficiency, makes them well-suited to al-
gorithms related to packet classification, such as longest
prefix match (LPM). The goal of LPM routing is to
match a destination IP on the longest prefix in the for-
warding table. This can be implemented by grouping
prefixes by length and programming a Bloom filter for
each length. Then, all the Bloom filters are queried in
parallel, and the longest match is chosen [5].

3 Threat Model

In current cloud setups, cloud tenants set up virtual net-
works with virtual machines and can choose to connect
them by VPN tunneling or by making an endpoint ex-
plicitly public and filtering at the endpoint using some-
thing similar to VPF. When making all endpoints pub-
licly routable, the number of public IPs can increase ex-
ponentially. This widens the attack surface area for re-
source exhaustion attacks against the cloud and applica-
tions. Denial of service (DoS) of attacks can target a
specific address or sweep an entire address space.

This increase in attack surface area makes the cloud’s
private wide area network (WAN) vulnerable to exhaus-
tion. Network traffic enters the clouds at edge data cen-
ters or points of presence close to the origin of the traffic.
Then it is shuttled to large regional data centers through
the cloud’s private WAN, which is expensive for the
cloud to provision. Much work has gone into optimizing
the utilization of the WAN for least cost [13, 12, 11, 21].
DoS attacks can congest this expensive WAN resource.

4 Design

4.1 Overview
Before detailing the design, we summarize the problem.
A packet from the Internet arrives at a cloud entry point,
such as an edge location or a point of presence (PoP), and
its destination and source IP must be matched against the
corresponding tenant endpoint’s firewall rules. In clouds
today, firewalling only occurs once the traffic reaches the
endpoint. This is sufficient for traditional cloud setups
since endpoints are not publicly routable, so the amount
of disallowed traffic is minimal. However, making end-
points publicly routable increases the potential for DoS
attacks to exhaust the cloud WAN bandwidth, since at-
tackers are now able to direct traffic to the endpoints’

3



Figure 3: System design. At the edge router, the TCAM
is partitioned into heavy hitters and Bloom filters point-
ing to multi-tenant firewalls.

public IPs. Thus, it is no longer acceptable to allow all
traffic to exit the entry point before hitting a firewall:
some firewalling must occur within the PoP.

The main goal of the design is to minimize the
amount of disallowed traffic exiting the cloud entry
point while maximizing the speed and throughput of al-
lowed traffic. A naive solution would be to place a
monolithic firewall at the PoP containing the rules of
every tenant endpoint. This is infeasible because of
the number of firewall rules: O(number of endpoints×
number of external connections per end point) is far too
large to look up sufficiently quickly in a single firewall.

With these constraints in mind, the design introduces
a new level of firewalling at the cloud entry point, in ad-
dition to the per-endpoint firewalls already present in tra-
ditional tenant VPCs. The overall system design can be
found in Figure 3. Note that the firewalls in the PoP are
the only new hardware added by the design; the TCAM
and the WAN links already exist in clouds today. These
new firewalls are sharded by tenant, limiting the num-
ber of rules per firewall to allow reasonable lookup time
in software, using the NetFilter Linux kernel module.
Then, the challenge becomes identifying which multi-
tenant firewall a packet should be directed to. This must
happen quickly; in particular, at line rate, so that incom-
ing network traffic is not stalled at the router. The TCAM
in the entry point’s router is capable of line-rate lookups.
However, edge routers today already use much of their
TCAM for forwarding tables, leaving little room for ad-
ditional entries related to firewalling. Thus, the entries

pointing to the multi-tenant firewalls are compressed into
Bloom filters, as described in section 4.2.

The multi-tenant firewalls limit the amount of traffic
that would traverse the expensive cloud WAN only to be
dropped at the endpoint firewall. However, they do not
reduce this traffic to zero, since Bloom filters can pro-
duce false positives. In the false-positive case, a packet
is directed to the wrong multi-tenant firewall. The fire-
wall server must detect this and direct the packet over
the WAN to the tenant region, since its firewall does not
contain the tenant’s rules and therefore the server cannot
determine if the packet should be allowed or denied.

Directing traffic to the multi-tenant firewalls increases
the latency of its path. Within an edge data center, la-
tency between endpoints is on average 10 ms, so we ex-
pect about 20 ms increase. To minimize this, a small
percentage of the TCAM caches a number of endpoint
firewall rules. These cached rules will be the most fre-
quently hit firewall rules or the ”heavy hitter” rules. Traf-
fic matching these rules bypasses the multi-tenant fire-
walls, as detailed in section 4.2.

In this design, an ingress packet traverses the cloud
in the following way. First, it is matched against both
partitions of the TCAM. If its source and destination IP
matches one of the heavy-hitter rules, it can be directed
over the WAN to the tenant region. Otherwise, if its des-
tination matches one of the Bloom filters, it is routed to
a multi-tenant server and directed over the WAN if it
matches a rule in the server’s firewall (or if the Bloom
filter was a false positive). If the packet’s destination
matches no Bloom filter, it is not destined for any of the
cloud’s tenant endpoints and is dropped.

4.2 Router

This section details the design of the TCAM at the cloud
PoP edge router, shown in Figure 4. Today, the TCAM
contains a traditional forwarding table directing traffic
entering and leaving the cloud to the correct interface
[27]. Our design adds two additional partitions to the
TCAM. The first contains a limited subset of the cloud
tenants’ firewall rules. This subset must be chosen care-
fully in order to use the expensive memory for opti-
mal benefit. In particular, the aim is to maximize the
amount of traffic matched by these rules, in other words,
to choose the ”heaviest-hitting” rules to cache in the
TCAM.

Fortunately, clouds today perform extensive traffic
analysis, and therefore have a thorough understanding of
how much incoming traffic matches each firewall rule.
Additionally, a number of empirical studies have found
that traffic in large networks tends to exhibit a skewed
distribution across destination and source IPs [10, 26, 4].
As shown in Figure 6, approximately 90% of packets are

4



Figure 4: TCAM at the edge router is partitioned into
three regions: the forwarding table; heavy-hitter rules,
which route traffic directly over the WAN; and Bloom
filters routing to multi-tenant firewalls. The elements of
the Bloom filters are fixed-size blocks of a tenant’s IP
space.

matched by only the 25 heaviest-hitting rules (note that
the “permit rules” line is relevant in this context, since
the endpoints are default-off. Also, the y-axis is loga-
rithmic). Consequently, a large percentage of traffic can
match the cached TCAM rules using a small amount of
TCAM.

The second novel TCAM partition contains the Bloom
filters that direct traffic to the PoP’s multi-tenant fire-
walls. Each TCAM entry in this partition is a Bloom
filter summarizing the IP space of multiple tenants. The
space efficiency of Bloom filters allows the large number
of tenants to be represented in the limited TCAM space.
The design of these Bloom filters is inspired by previous
work on Bloom filters for subset and superset queries [8].
Each element hashed into the Bloom filters is a fixed-size
chunk of a tenant’s IP space. Unlike a traditional Bloom
filter, when an element hashes to a bit index, the bit is
set to * rather than 1. In this way, a query destination IP
matches the TCAM entry if its prefix matches one of the
prefixes represented by the Bloom filter.

As a (purely illustrative) example, consider Figure
5. Here, one 8-bit TCAM line represents the prefixes
a.b.c/24 and a.b.d/24, while the hash functions return
bits 0 and 7 for the former and bits 2 and 5 for the lat-
ter. In this case, the TCAM line is ∗0 ∗ 00 ∗ 0∗. The
steps to querying for destination IP a.b.c.x are as follows.
First, the IP is truncated to the prefix length represented
by each element of the Bloom filters. Then, the truncated
IP is hashed by the k hash functions of the Bloom filter.
Note that this will require hashing functionality in the
router, possible for instance with P4 modules [14].

The query is then checked against all the TCAM en-
tries in parallel as usual. In this example, the query
would hash to 10000001, which matches the entry ∗0 ∗
00 ∗ 0∗ since all the indexes set to 1 in the query match

Figure 5: Chunks of tenant IP space are hashed into
Bloom filters with 1 bits mapped to wildcards.

the corresponding * indices in the Bloom filter. All 0 in-
dices in the query either match 0s or *s, depending on
whether other elements of the set hashed to those in-
dices. As usual, the TCAM priority encoder chooses a
single matching line out of potentially multiple matches.
Thus, the probability of directing a packet to the wrong
multi-tenant firewall is the false positive probability of a
single Bloom filter. False-positive traffic is directed over
the WAN and eventually reaches the per-endpoint fire-
walls, which act as a last line of defense in denying any
false-positive traffic that would have been denied by the
correct multi-tenant firewall in the PoP.

Note it is important that the chunks represented by
each element of the Bloom filter have a fixed size, since
each destination IP must be truncated to the same pre-
fix length as every element. Thus, cloud providers will
need to break the IP space of each tenant, which may
be variable in total size, into chunks. The optimal chunk
size will depend on the number of tenants, distribution of
IP space size across tenants, and the amount of TCAM
allocated to Bloom filters. Choosing a smaller chunk
size increases the false positive probability, since the
Bloom filter contains more elements, but reduces the
over-allocation of IP space to each tenant that may oc-
cur with less granular chunks.

In addition to choosing the Bloom filter chunk size,
cloud providers face several other tradeoffs in choosing
the parameters of their firewall system in this design.
One is the relative allocation of TCAM to heavy-hitter
rules versus Bloom filters. Heavy-hitter rules reduce the
average latency of a packet’s path by allowing matched
packets to bypass the multi-tenant firewalls. However,
placing more heavy-hitter rules in the TCAM utilizes
additional cloud WAN bandwidth by leaving less room
for Bloom filters and therefore increasing the false posi-
tive rate, forcing the PoP firewall servers to default-allow
more traffic. Thus, tuning the TCAM partitioning allows
cloud providers to explore a tradeoff between latency
and bandwidth. The optimal choice may be impacted
by the relative importance of latency and bandwidth to
the cloud’s tenants, as well as the traffic distribution and

5



Figure 6: Traffic distribution across firewall rules (from
[26]). The y-axis is the fraction of packets not matched
by the corresponding number of rules.

total tenant IP space.

4.3 Firewall Manager

In order to manage and update rules for each virtual ma-
chine, a firewall manager service will need to be imple-
mented by the cloud providers. Most cloud providers al-
ready implement similar services, such as AWS Security
Groups. These services can be extended to manage the
router and firewall servers at each point of presence.

In order to ease updates to the firewall servers, the de-
sign aggregates all rules for a particular tenant onto one
server. This design aligns well with the contiguous ad-
dress blocks assigned to each tenant. Updating the Net-
Filter firewall servers is linear with the number of rules in
the table, as found in Section 5.2. Thus, the firewall man-
ager can batch updates to the servers in time increments
in order to handle a high frequency of updates from ten-
ants.

Deleting from Bloom filters is not possible. Every
time a Bloom filter has to be updated, it needs to be
recreated from scratch. Therefore, instead of updating
the Bloom filter every time the address space is reallo-
cated, the firewall manager can batch updates to the fil-
ters once a threshold of delayed updates is reached. The
design is able to handle incorrectly directed traffic due to
its multi-level firewalling and ability to handle Bloom fil-
ter false positives, so the incorrectly directed traffic due
to stale Bloom filter entries will not be an issue.

5 Evaluation

In evaluating this new firewalling system, we compare
its drawbacks against its benefit. The drawbacks fall

into two categories: the edge router TCAM and the
multi-tenant firewalls. We evaluate these in sections
5.1 and 5.2, respectively. Some of the drawbacks re-
garding the router TCAM involve tradeoffs which cloud
providers may explore by tuning parameters. That is,
cloud providers may prefer to sacrifice more of one met-
ric for another, based on their environment and priorities.
To inform such decisions, we also explore these tradeoffs
in section 5.1.

In quantifying the benefit of the system, we revisit
the motivation for the publicly-routable endpoints re-
quiring us to design new firewalling. To review, con-
figuring virtual networks today is a complex and error-
prone process. Thus, to evaluate the benefit of rethink-
ing this abstraction, we must quantify the complexity
saved. One metric of complexity is the reduction in
number of network boxes that cloud tenants must man-
age in the redesigned virtual cloud. These boxes fall
into several categories; the first is VPCs and their as-
sociated gateways. The number of VPCs and gate-
ways per tenant is a multiplicative factor of several net-
work components. Each of the tenant’s cloud regions
generally has a small number of domains, such as one
for development, one for production, and one at the
edge. In turn, each domain usually has a small number
of VPCs. Thus, the total number of VPCs eliminated
per tenant is O(cloud regions × domains per region ×
VPCs per domain). Removing these VPCs from a ten-
ant’s view also eliminates the associated gateways, of
which each VPC has one or a few. The second type of
virtual network device this system abstracts away is tran-
sit peerings between tenants’ cloud regions. These peer-
ings are often pairwise and unidirectional, making the
number O(cloud regions2). To make these expressions
more concrete, a recent survey reports that over 88% of
surveyed enterprises use two or more cloud providers,
with an average of 16 providers [20]. A tenant may use
multiple regions within each provider. As an example,
consider Aviatrix, a tenant with two cloud regions. For
Aviatrix, the proposed virtual networking design reduces
the number of network boxes configured by 12 VPCs, 16
gateways, and 2 peerings [15].

5.1 Router

To evaluate the performance of the TCAM design, the
two main metrics of interest are the increase in WAN uti-
lization due to Bloom filter false positives (Figure 7) and
the amount of traffic that can bypass the multi-tenant fire-
walls (Figure 8). The former metric is important because
WAN bandwidth is expensive, and the latter because the
path through the multi-tenant firewalls has increased la-
tency, as discussed in section 5.2.

In generating these figures, we assume a TCAM of

6



Table 1: Cloud statistics used to evaluate the scaling of
our design. * This statistic was calculated based off the
others.

Statistic Value
Number of tenants 100k - 1,000k
VPCs per tenant 10s - 100s

Number of VMs per VPC/tenant 10s
Width of TCAM line 288

TCAM size 7,000,000
Forwarding table size 900,000

Total number of VMs* 10e7 - 10e13

Figure 7: WAN utilization increase vs. Bloom filter false
positive rate

width 288 bits, with 7 million entries, 900,000 of which
are occupied by the forwarding table. The fixed-size
chunks used to divide tenant IP space are of size 16,000
IPs, or a /18. The following equation is used for the
Bloom filter false positive rate:

P = (1− [1− 1
m
]kn)k

where P is the false positive rate, m is the number of bits
in the Bloom filter (here, the width of the TCAM), k is
the number of hash functions, calculated as m

n ln2, and n
is the number of elements hashed into the filter (here, the
number of fixed-size tenant IP chunks per TCAM line).
We estimate the scale of the number of rules using ranges
of statistics from cloud providers. These statistics can
be found in Table 1. We calculated the maximum total
number of VMs by multiplying the maximum number of
VPCs per tenant, number of tenants, and number of VMs
per VPC; the minimum was calculated analogously.

As shown in Figure 7, WAN utilization due to false
positives increases linearly with the false positive rate of
the Bloom filters that direct traffic to software firewalls
in the PoP. This metric is calculated as a percentage of

Figure 8: Traffic bypassing PoP FWs vs. TCAM heavy
hitter fraction

WAN capacity. The baseline for this metric is zero: In
clouds today no WAN is utilized due to Bloom filter false
positives, since clouds today have no software firewalls
in the PoP.

The figure shows two scenarios, corresponding to dif-
ferent levels of severity of DDoS. The steeper line shows
an attack of 2.5 Tbps, and the other line 100 Gbps. For
context, the worst DDoS attack on record was 2.5 Tbps,
and most do not exceed 10 Gbps [2].

As shown in the figure, even at a false positive rate of
0.3 (30%), only 3% of WAN capacity is consumed by
false-positive traffic in the 100 Gbps scenario (which is
still an order of magnitude worse than most DDoS at-
tacks), and 75% in the 2.5 Tbps scenario. For context,
WAN utilization today is generally only 40-60% [11], so
WAN links are likely to handle a small percentage in-
crease well under average conditions.

We discuss the factors affecting false positive rate be-
low (in Figures 9 and 10), and show that the rate is likely
to be on the lower end of Figure 7.

Figure 8 shows the fraction of traffic that can bypass
the multi-tenant firewalls, taking the fast path. This traf-
fic is that which matches one of the TCAM heavy-hitter
rules. Clouds today have no multi-tenant firewalls in the
PoP, as that is a new component proposed by this de-
sign, so no traffic takes a path through firewalls in the
PoP. Thus, the baseline for this figure is 100% of traffic
taking the fast path. (However, as discussed, this is un-
acceptable with publicly-routable endpoints, due to the
vulnerability of WAN to resource exhaustion attacks.)
As shown in the figure, nearly all traffic is matched by
the heavy-hitter rules with only a very small fraction of
TCAM allocated to the rules. This is encouraging, since
TCAM is a precious resource. In generating this figure,
we used the empirical traffic distribution in the graph
shown in Figure 6, and kept the number of endpoints
constant at the average of the range discussed in 5.1.

The small amount of TCAM needed to put most traffic

7



Figure 9: Bloom filter false positive rate vs heavy hitter
fraction

Figure 10: Bloom filter false positive rate vs. number of
VMs

on the fast path has positive implications for the Bloom
filter false positive rate, as shown in Figure 9. De-
creasing the fraction of TCAM allocated to heavy-hitter
rules decreases Bloom filter false positive rate, since
more TCAM can be allocated to the Bloom filters. This
presents an interesting tradeoff to cloud providers: al-
locating more TCAM to heavy-hitters reduces traffic la-
tency by putting more packets on the fast path, but in-
creases WAN bandwidth by increasing Bloom filter false
positives.

A final factor affecting the Bloom filter false positive
rate is the overall size of a cloud region, as measured by
the number of tenant endpoints, shown in Figure 10. As
the number of endpoints increases, the Bloom filters are
more likely to have false positives, since more chunks
are hashed into the TCAM space. The number of end-
points in a cloud depends on the provider; the range here
was chosen based on conversations with a large cloud
provider. As shown, the false positive rate is near zero
until the very top end of the range.

5.2 Multi-Tenant Firewall

To evaluate the multi-tenant firewall servers, we measure
performance as the number of rules per server increases
and compare our results with the status-quo VPN server.
Currently a tenant would connect two cloud deployments
using two VPN servers at each end, and establish a tun-
nel in between. All traffic between the two clouds would
go through the VPN servers; therefore, they serve a sim-
ilar purpose as the multi-tenant firewall servers. Cloud
users currently bear the cost of the VPN servers explic-
itly, since they need to maintain the servers on their own.
Changing to the new design means that we are moving
the computation currently done at the VPN servers of
each tenant to the firewall servers at the edge locations.
This increases the cost of compute managed by the cloud
provider; however, the provider is likely to pass the cost
back to the tenants, so the economic impact is likely to
be unchanged.

We conducted several micro-benchmarks to measure
the CPU usage, latency, and bandwidth of traffic against
the number of rules installed in the multi-tenant firewalls.
These firewalls are implemented using NetFilter. It is
worth noting that NetFilter represents rules as “chains”,
which are linked lists where packet matches are speci-
fied. NetFilter also has a built-in notation of set, which is
a hashed set of elements - in our case, IP addresses - and
rules can be specified to match upon a certain set. There-
fore, instead of maintaining the whitelist of addresses on
the chain, we do it using a set and have only one rule on
the chain that matches on the set. It is unacceptably slow
if we maintain the addresses using multiple rules instead
of one set. In the following paragraphs, we use “number
of rules” and “number of elements” interchangeably.

We set up the benchmarks on two instances of the
t3.large machines on AWS EC2 in the same datacenter,
each having 2 virtual CPU cores, 8 Gigabytes of RAM,
and a 5 Gigabit connection bandwidth. They are very un-
derpowered compared to the machines we expect to see
in actual deployments, but we also load them with much
fewer rules and lighter traffic than we expect for the ac-
tual machines. For the baseline VPN measurements, we
establish an IPSec tunnel between the two machines, and
send traffic through the tunnel. For our measurements,
we designate one machine as the server and put addresses
into the whitelist mentioned before, and we use the other
machine to send TCP traffic. We run the tcp bw and
tcp lat test in qperf for 60 seconds, and gather CPU
utilization using mpstat. We report the CPU utilization
using the data during the bandwidth test, because that
gives off a heavier load to the machines and stresses the
CPU more than the latency test does.

As shown in Figure 11, as the number of rules installed
increases, the CPU utilization on the firewall server holds

8



Figure 11: CPU usage during qperf bandwidth test

Figure 12: Bandwidth comparison

constant. The aggregate CPU usage of the status-quo
VPN servers is the yellow line, or 50% of a single core,
multiplied by the number of tenants. On the other hand,
the aggregate usage for our design is the blue line, ap-
proximately 25%, multiplied by the number of firewall
servers. The number of servers depends on the degree of
sharding we land on, but it will be smaller than the num-
ber of tenants. Thus, the overall CPU usage of the design
is lower than clouds today.

Figure 13 shows that our approach takes a roughly
constant time to match a packet to a rule, because the el-
ements are gathered in a hash set. This latency is slightly
lower than the VPN tunnel, likely because it eliminates
encryption and decryption. As shown in Figure 12, our
approach gets very close to the theoretical bandwidth up-
per bound of 5Gbps, whereas sending traffic through the
VPN tunnel yields a much lower bandwidth.

Storing elements in the hash set takes, unsurprisingly,
linear space. With the RAM usage information shown in
Figure 14, we can fit a linear model. In a machine with
1024 Gigabytes of RAM, we can put in about 8.7 million
elements.

We also measured latency to update the ruleset. Un-
fortunately, as the number of rules installed increase, the

Figure 13: Latency comparison

Figure 14: Memory usage

Figure 15: Time to add one element

9



time to install one more rule scales linearly as shown in
Figure 15. Because there is a non-trivial overhead in both
the addition of the rules and the round trip time between
the firewall manager and the firewall server, batch update
of the rules will certainly be beneficial. We suspect the
overhead of adding rules comes from rehashing of exist-
ing elements, since we observe a high CPU utilization
during the time.

6 Discussion

6.1 Limitations

The Bloom filter design requires hashing an incoming
packet’s destination IP. This hashing must be done in
hardware in order to maintain line rate classification at
the edge router. Current routers do not support hashing
out of the box. However, routers capable of Program-
ming Protocol-independent Packet Processors (P4) can
be programmed with hashing hardware modules [14].

In designing the Bloom filters, we have assumed that
a tenant’s IP space is contiguous enough to be broken
up into chunks of size /16. We consider this a reasonable
assumption, since tenant IP space is generally contiguous
within each VPC belonging to a tenant, and often across
VPCs. However, if a cloud provider chooses to allocate
IP space less contiguously, they may need to choose a
smaller chunk size, which increases Bloom filter false
positive rate.

6.2 Future work

Currently the multi-tenant firewall server design uses the
software firewall implementation, NetFilter, that can be
found by default in the Linux kernel. Instead of using the
default Linux firewall implementation, other packet clas-
sification algorithms and data structures can be imple-
mented in the kernel using eBPF [24], which allows run-
ning sandboxed programs in the kernel. Potential packet
classification data structures include tries [19, 23], trees
[3, 6], spatial decomposition methods [9, 18, 25], cross-
producting [23] and tuple space search [22]. These may
give us faster classification latency, faster update times,
and improved memory utilization.

Bloom filters are not capable of deleting elements,
since it is not possible to ascertain which bits were set
by the element to be deleted versus other elements in the
set. This is likely not a significant problem for most
cloud providers, since tenant IP space is not likely to
be frequently reallocated. However, for cloud providers
who often find themselves removing tenants or reducing
tenants’ IP space, more complex TCAM data structures
could be considered. There has been previous work on

deletion-capable Bloom filters, such as counting Bloom
filters [8, 5].

As discussed in sections 4.2 and 5.1, cloud providers
control a number of parameters that impact the perfor-
mance of the firewall system in various ways. While
cloud providers often have extensive systems for mon-
itoring the metrics involved in these tradeoffs, they may
benefit from new systems to better understand how these
metrics impact the firewall’s performance. This is par-
ticularly true since the relationships between many of
the parameters are intertwined. Future work may in-
clude building automated models of these relationships.
This may also be helpful when facing decisions about
whether to acquire additional amounts of very expensive
resources used by the firewall, such as TCAM and WAN
bandwidth.

Many cloud providers are concerned about isolation
between tenants. When combining tenants in both the
Bloom filters and the multi-tenant firewalls, providers
will likely want to choose carefully in order to prevent
heavy traffic to one tenant, or changes in the traffic dis-
tribution to a tenant, from impacting the latency or band-
width observed by another tenant. This will involve bal-
ancing load and number of rules across the multi-tenant
firewall servers, as well as assigning tenants to Bloom
filters such that each tenant sees a similar false positive
rate. The latter point may be another reason to consider
Bloom filters with deletion, as discussed above.

6.3 Extensions
This sharded firewall design can be used in other situ-
ations where there is a large scale of rules. ISPs im-
plement some simple firewalling for customers. If they
want to provide firewalls as a service they may need to
support rules at the scale of cloud providers. In Internet
of things settings, such as smart homes or offices, de-
vices may need network security. For example, for obvi-
ous physical security reasons a fire alarm may need to be
DoS protected. A firewall system such as our design may
need to be implemented at the gateway router if there are
many devices within a large building.

6.4 IPv6
Given the number of VMs that require pubicly-routable
IPs in this design, we will likely need IPv6 to be de-
ployed on a larger scale. This brings both potential im-
provements and possible drawbacks. On the negative
side, the size of filters will increase by a factor of about
4, since a whole v6 address is 4 times the size of a v4
address. This reduces the number of rules that can fit
in a fixed allocation of TCAM and PoP firewall servers.
However, IPv6 provides the opportunity to have a less

10



fractured address space. With 128-bit addresses, we can
afford to assign much larger blocks of addresses to each
tenant, reducing the concern for overallocation in deter-
mining the number of elements hashed to the Bloom fil-
ters.

7 Conclusion

Making all addresses publicly routable but default off in
a cloud increases the surface of attack for resource ex-
haustion, by making more of the cloud’s addresses ac-
cessible. Currently, cloud providers place firewalls at the
tenant endpoints but not at the cloud PoP, so introducing
publicly routable endpoints allows attackers to congest
the expensive private WAN network of the cloud. In or-
der to protect the private WAN, we propose a design that
places a scalable firewall system at every PoP or edge
data center. In order for the firewall to scale to the large
number of rules, we have sharded the firewall by tenant.
The router at the PoP also needs to handle the scale of the
rules, so we dedicated a part of the TCAM in the router
for Bloom filters that match destination addresses to for-
warding actions that route to the PoP firewalls. Bloom
filters allow the entire public address space of the cloud
to fit in the limited TCAM space, since multiple address
spaces can be mapped to one line and multiple tenants
can be aggregated onto one firewall server. Addition-
ally, Bloom filters cannot support variable prefix length
matching. So, the address space of the cloud provider
is cut into blocks to enable fixed prefix length matching.
We also dedicate a part of the TCAM for frequently hit
rules. This enables a large portion of the valid incoming
network traffic to be forwarded directly into the WAN to-
ward its destination instead of having to go through the
multi-tenant firewalls.

In our evaluation, we analyzed how the false posi-
tive nature of the Bloom filters in the TCAMs affect the
WAN bandwidth. Since each line in the TCAM is evalu-
ated in parallel, it is possible to match on multiple lines.
The TCAM chooses one of the lines as the best match.
The action for that line might not point to the correct
multi-tenant firewall due to the false positive nature of
the Bloom filters. So, if a multi-tenant firewall receives
packets that do not match its tenants address spaces, then
it will default-allow the traffic. Therefore with a larger
number of VMs, our false positive rate increases, which
directly relates to an increase in WAN utilization. How-
ever, our evaluation shows that by allocating only a small
portion of the TCAM to heavy hitters, a large portion of
the network traffic can bypass the multi-tenant firewalls.
We also evaluated the feasibility of this design for a cloud
provider to implement. We found that the firewalls in
the PoP are comparable to or better than status-quo VPN
tunnels in terms of CPU, bandwidth, and classification

latency.

8 Acknowledgements

We would like to thank our advisor Professor Sylvia Rat-
nasamy and our collaborators Sarah McClure and Zeke
Medley for their support. We would also like to ac-
knowledge our course instructors Professor John Kubia-
towicz, Professor Natacha Crooks, and teaching assistant
Stephanie Wang.

References
[1] MX10000 Modular Universal Routing Platforms Datasheets | Ju-

niper Networks.

[2] Famous ddos attacks — the largest ddos attacks of all time, 2021.

[3] BUDDHIKOT, M. M., SURI, S., AND WALDVOGEL, M. Space
Decomposition Techniques for Fast Layer-4 Switching. In Pro-
tocols for High-Speed Networks VI, J. D. Touch and J. P. G. Ster-
benz, Eds., vol. 31. Springer US, Boston, MA, 2000, pp. 25–41.
Series Title: IFIP Advances in Information and Communication
Technology.

[4] COHEN, E., AND LUND, C. Packet classification in large isps:
Design and evaluation of decision tree classifiers. ACM SIGMET-
RICS Performance Evaluation Review 33, 1 (2005), 73–84.

[5] DHARMAPURIKAR, S., KRISHNAMURTHY, P., AND TAYLOR,
D. E. Longest prefix matching using bloom filters. IEEE/ACM
Transactions on Networking 14, 2 (2006), 397–409.

[6] FELDMAN, A., AND MUTHUKRISHNAN, S. Tradeoffs for
packet classification. In Proceedings IEEE INFOCOM 2000.
Conference on Computer Communications. Nineteenth Annual
Joint Conference of the IEEE Computer and Communications So-
cieties (Cat. No.00CH37064) (Mar. 2000), vol. 3, pp. 1193–1202
vol.3. ISSN: 0743-166X.

[7] FIRESTONE, D. VFP: A Virtual Switch Platform for Host SDN
in the Public Cloud. 14.

[8] GOEL, A., AND GUPTA, P. Small subset queries and bloom fil-
ters using ternary associative memories, with applications. ACM
SIGMETRICS Performance Evaluation Review 38, 1 (2010),
143–154.

[9] GUPTA, P., AND MCKEOWN, N. Packet Classification using
Hierarchical Intelligent Cuttings. 9.

[10] HAMED, H., AND AL-SHAER, E. Dynamic rule-ordering opti-
mization for high-speed firewall filtering. In Proceedings of the
2006 ACM Symposium on Information, computer and communi-
cations security (2006), pp. 332–342.

[11] HONG, C.-Y. Achieving High Utilization with Software-Driven
WAN. 15.

[12] HONG, C.-Y., MANDAL, S., AL-FARES, M., ZHU, M., ALIMI,
R., B., K. N., BHAGAT, C., JAIN, S., KAIMAL, J., LIANG, S.,
MENDELEV, K., PADGETT, S., RABE, F., RAY, S., TEWARI,
M., TIERNEY, M., ZAHN, M., ZOLLA, J., ONG, J., AND VAH-
DAT, A. B4 and after: managing hierarchy, partitioning, and
asymmetry for availability and scale in google’s software-defined
WAN. In Proceedings of the 2018 Conference of the ACM Spe-
cial Interest Group on Data Communication (New York, NY,
USA, Aug. 2018), SIGCOMM ’18, Association for Computing
Machinery, pp. 74–87.

11



[13] JAIN, S., KUMAR, A., MANDAL, S., ONG, J., POUTIEVSKI,
L., SINGH, A., VENKATA, S., WANDERER, J., ZHOU, J.,
ZHU, M., ZOLLA, J., HÖLZLE, U., STUART, S., AND VAHDAT,
A. B4: Experience with a Globally-Deployed Software Defined
WAN. 12.

[14] KFOURY, E. F., CRICHIGNO, J., AND BOU-HARB, E. An ex-
haustive survey on p4 programmable data plane switches: Tax-
onomy, applications, challenges, and future trends. IEEE Access
(2021).

[15] MCCLURE, S. Rethinking networking abstractions for cloud ten-
ants (the fun new cloud).

[16] MCCLURE, S., RATNASAMY, S., BANSAL, D., AND PADHYE,
J. Rethinking networking abstractions for cloud tenants. In Pro-
ceedings of the Workshop on Hot Topics in Operating Systems
(New York, NY, USA, June 2021), HotOS ’21, Association for
Computing MFachinery, pp. 41–48.

[17] PATEL, P., BANSAL, D., YUAN, L., MURTHY, A., GREEN-
BERG, A., MALTZ, D. A., KERN, R., KUMAR, H., ZIKOS, M.,
WU, H., KIM, C., AND KARRI, N. Ananta: Cloud Scale Load
Balancing. 12.

[18] QI, Y., XU, L., YANG, B., XUE, Y., AND LI, J. Packet Classifi-
cation Algorithms: From Theory to Practice. In IEEE INFOCOM
2009 (Apr. 2009), pp. 648–656. ISSN: 0743-166X.

[19] QIU, L., VARGHESE, G., AND SURI, S. Fast firewall imple-
mentations for software and hardware-based routers. In Proceed-
ings Ninth International Conference on Network Protocols. ICNP
2001 (Nov. 2001), pp. 241–250.

[20] RAMEL, B. D., AND 10/21/2019. Research Brief Summarizes
Trends in Multi-Cloud Deployments -.

[21] SINGH, R., BJORNER, N., SHOHAM, S., YIN, Y., ARNOLD,
J., AND GAUDETTE, J. Cost-effective capacity provisioning in
wide area networks with Shoofly. In Proceedings of the 2021
ACM SIGCOMM 2021 Conference (New York, NY, USA, Aug.
2021), SIGCOMM ’21, Association for Computing Machinery,
pp. 534–546.

[22] SRINIVASAN, V., SURI, S., AND VARGHESET, G. Packet Clas-
sification using Tuple Space Search. 12.

[23] SRINIVASAN, V., VARGHESET, G., SURIS, S., AND WALDVO-
GELG, M. Fast and Scalable Layer Four Switching. 12.

[24] THE LINUX FOUNDATION. eBPF, 2021.

[25] VAMANAN, B., VOSKUILEN, G., AND VIJAYKUMAR, T. N. Ef-
fiCuts: optimizing packet classification for memory and through-
put. 12.

[26] WALLERICH, J., DREGER, H., FELDMANN, A., KRISHNA-
MURTHY, B., AND WILLINGER, W. A methodology for studying
persistency aspects of internet flows. ACM SIGCOMM Computer
Communication Review 35, 2 (2005), 23–36.

[27] YAP, K., MOTIWALA, M., RAHE, J., PADGETT, S., HOLLI-
MAN, M., BALDUS, G., HINES, M., KIM, T., NARAYANAN,
A., JAIN, A., LIN, V., RICE, C., ROGAN, B., SINGH, A.,
TANAKA, B., VERMA, M., SOOD, P., TARIQ, M., TIERNEY,
M., TRUMIC, D., VALANCIUS, V., YING, C., KALLAHALLA,
M., KOLEY, B., AND VAHDAT, A. Taking the edge off with
espresso: Scale, reliability and programmability for global inter-
net peering.

12


