Narrow - Distributed DDOS Prevention on EI

Ziyao Zhang
UC Berkeley
Berkeley, CA

ziyaoz@berkeley.edu

ABSTRACT

Internet nowadays is still prone to DDoS attacks, and a de-
fense to which requires an equally powered system as the
attack. We present Narrow, a protocol built upon the Exten-
sible Internet [3] architecture, as a way to deny DDoS in a
distributed fashion. Narrow works by limiting bandwidth of
an attacking host near the source from its service node, as
described in EI, at the request of the victim. Unlike previous
attempts on the same topics, we do not need any trusted
component on the compromised attacker host. We imple-
mented a system locally using Mininet and Open vSwitch.
We evaluated the performance of the system, and found that
with reasonable amount of memory, a service node running
Narrow can stop an attack at its root without significant
impact on the network’s latency or bandwidth.

1 INTRODUCTION

1.1 Motivation

DDoS is still a problem on the Internet [4]. In 2020, AWS
recorded an attack of 2.3Tbps, the largest they have seen
at the time [11]. While not indefensible, massive DDoS at-
tacks require a similarly massive distributed infrastructure
to defend against. Not only does this infrastructure take a
lot of engineering time, it is also very expensive to build,
forcing small and medium content providers to purchase
DDoS protection from a large provider.

With the Extensible Internet (EI) proposal [3], we see a
new opportunity for the Internet infrastructure itself to offer
DDoS protection to all participants in the network at a low
cost. Specifically, the Extensible Internet proposal introduces
1) a new network component called the service node (SN)
that we can leverage to filter attack traffic and 2) a powerful
trust model that we can leverage to simplify our protocol

design.

1.2 Background on Extensible Internet (EI)

Before we dive into the design of Narrow, we’ll first reiterate
parts of the EI architecture [3] that play a crucial role in our
protocol.

L3.5, the service layer, is a layer built on top of packet
delivery to provide the Internet service. The Internet service
model as defined by EI not only includes connectivity (e.g.
current & future versions of IP, NDN [6]) but also other

Yichi Zhang
UC Berkeley
Berkeley, CA

billyz@berkeley.edu

in-network processing capabilities like caching and flow
termination. The Narrow protocol is an L3.5 protocol that
provides DDoS protection to other L3.5 protocols.

Service Nodes, or SNs, provide the Internet service to end
hosts. When a new host connects to EI, it runs a discovery
protocol to find an SN and receives Internet service via the SN.
Since SNs provide Internet service to hosts, they implement
all layers in the stack, including L3.5. On the other hand,
because switches and routers only provide packet delivery,
they implement L3 and below.

2 PROTOCOL DESIGN

2.1 Trust Model

Although not entirely explicitly outlined in the original EI
paper [3], the EI architecture is conducive to a trust model
that can greatly simplify the design of a DDoS protection
protocol. The trust model can be summarized as:

e Hosts and SNs are typically in a customer / provider
relationship bound by contracts, though sometimes
hosts and SNs could be owned by the same entity (e.g.
cloud providers).

e SN disallow address spoofing.

e Service node providers (SNPs) all directly peer with
each other.

e Both SN-Host and SN-SN connections guarantee in-
tegrity and authenticity of their messages.

2.2 AnImportant Assumption

For ease of explanation, we assume each SNP only owns one
SN starting from the next subsection. In section 7, we lift
this limitation and discuss how to scale Narrow to Internet

scale.
Vlctlm (1) DosS traffi
SN (2) Narrow Regq-

Figure 1: Protocol Overview

2.3 Narrow Protocol

1) De ffi 1) D ffi
) DoS traffi At'tacker (1) DoS traffi
SN (3) Narrow Req:

4) If attacker passes traffic
threshold install filter

We now describe the normal operation of our protocol. We
start with a simple topology (Figure 1) of two service nodes

CS268, Jan-May 2021, Berkeley, CA

and two hosts, but it can be easily generalized to multiple
attackers and multiple victims. We designate host Hy as the
attacker and host Hy as the victim. Similarly, service node
SNy serves the attacker and SNy serves the victim. When
the attacker starts sending traffic towards the victim (1), the
victim identifies that it is under attack and sends a Narrow
packet destined to the attacker (2).
A Narrow packet contains the following fields:

idp3 5, addra, addry, tenq

where idy3 5 is the identifier for the L3.5 through which the
victim no longer wants to receive the attacker’s traffic, addr4
and addry are the addresses of the attacker and the victim
under the schema of the specific L3.5 protocol, and t,, is the
time at which the Narrow request expires, a 64 bit integer
that represents milliseconds since epoch. We deem that t,,4
should be fewer than 5 seconds from present time on SNy
to avoid availability concerns.

Upon receiving a Narrow packet, SNy directly forwards
it to SN4, who, after verifying that the attacker has been
sending enough traffic to the victim, will install a filter that
expires at tepq.

3 PROTOCOL IMPLEMENTATION

After contacting the original authors of EI [3], we learned
that the EI reference implementation is still in the works.
Since finishing the EI implementation is out of scope for this
paper, we start by specifying the components in an EI im-
plementation that we utilize in our Narrow implementation.
While major changes in the EI implementation will probably
force the Narrow implementation to change as well, we hope
that our work provides a good foundation for other possible
implementations of both Narrow and EL

3.1 EIImplementation

Pipe Terminus: When a packet first arrives at an SN or a
host, we assume they first go through a centralized compo-
nent that sorts the packets based on their L3.5 identifiers.
Borrowing a terminology from McCauley et al. [9], we call
this component the pipe terminus.

L3.5 Services: We assume each L3.5 service are logically
separated from each other and get their own execution re-
sources. We don’t make any assumptions on the execution
environment of an L3.5 service. Conceivably, an L3.5 service
could be running on a thread, a process, a container, a VM,
or even a cluster of machines.

Inter-service RPC: We assume each L3.5 service can define
a set of remote procedure calls (RPCs) for other L3.5 services
to invoke.

SN Metadata: We assume the EI software provides a mech-
anism for an L3.5 service to query what other L3.5 services

Ziyao Zhang and Yichi Zhang

are running on the SN / host and what RPCs do these L3.5
services support.

For all L3.5 services that want to support Narrow, they
should implement the following RPCs:

e prev_SNs(addr): returns a list of SNs that a packet
from addr could have come from. The list does not
include the current SN, and the list could be empty.

e next_SNs(addr): returns a SN that is closer to addr
than the current SN.

e get_filter(src_addr, dst_addr): returns a filter
that blocks traffic from src_addr to dst_addr. The
format of the filter depends on the EI implementation.
For example, if the EI implementation is built on top
of Open vSwitch [10], the filter returned could be an
OpenFlow rule. Another example is returning an eBPF
program.

3.2 Filter Installation

Since the pipe terminus is a component that every packet
goes through, we think it is a good candidate on which to
implement a generalized filter mechanism. When a Narrow
packet arrives at an SN, the pipe terminus forwards it to
the Narrow module. Then, the Narrow module determines
which L3.5 service does this Narrow request pertain to using
idr35 and queries the SN software to ensure that 1) this L3.5
service exist on this SN and 2) this L3.5 supports the required
RPCs. For performance, this query could be cached.

Next, the Narrow module verifies whether the origin of
the Narrow packet is legitimate. Specifically, if the Narrow
packet came from a host (i.e. the current SN is SNy), then the
Narrow module will assume that the pipe terminus has han-
dled user authentication and dropped spoofed packets, and
the packet is automatically trusted. Otherwise, (i.e. the cur-
rent SN is SN4), the Narrow module calls prev_SNs(addr)
with addry and checks if the originating SN is in the returned
list of SNs. If not, then the Narrow request is ignored.

Then, the Narrow module attempts to verify whether the
attacker has sent enough traffic to the victim to warrant
a filter to be installed. A specific threshold is derived in
section 5.4. We propose that the SN keep a history of all
previous flow bandwidth in a 10 second sliding window
for this purpose, though conceivably the specific implemen-
tation of flow traffic history could vary. Furthermore, we
argue that keeping all previous flows for 10s is doable be-
cause SNy is located on the edge. Once the attacker is iden-
tified as sending too much traffic, the Narrow module calls
get_filter(src_addr, dst_addr) on the requested L3.5
using addra as the src_addr and addry as the dst_addr.
Finally, the Narrow module installs the filter on the pipe
terminus with an expiration time t, .

Narrow - Distributed DDOS Prevention on El

1000

800

1st tear down start
last tear down end

600

Bandwidth {Mbits/s)

400

200

last install end

S 1st install start
E

2000 3000 4000 5000 6000 7000
Time {ms)

Figure 2: Bandwidth over time for a sample DDoS at-
tack involving 100 attackers and 1 victim

3.3 Packet Routing

When the Narrow module on SNy forwards a Narrow packet
to SN, it calls next_SNs(addr) with addra to get a list of
SNs. Then, the Narrow module sends a copy of the Narrow
packet to each of the returned SN.

4 EXPERIMENTAL RESULTS

There are two goals that we want to achieve through experi-
mentation. The first goal is functional verification: we want
to know if the Narrow protocol is effective in protecting
against the victim in basic DDoS scenarios. The second goal
is to determine bottlenecks in the Narrow protocol. As a
DDoS prevention protocol, we don’t want Narrow itself to
be vulnerable to DDoS. Knowing the bottlenecks informs us
of the weakest points in the face of an attack and additional
design choices we need to make to prevent abuse. As an ex-
ample, it is important to know how many filters are available
at a given time per SN4 per attacker, as it positively relates
how hard will certain types of attack be (see section 5.4).

4.1 Experiment Setup

We implemented a simplified local network system using
Mininet [8] and Open vSwitch (OvS) [10]. The entire setup
runs on an AWS EC2 c5a.2xlarge machine with 8 cores and
16GB of memory. We use Mininet to start an arbitrary num-
ber hosts as attackers and victims, all connected via an OvS
Switch, which acts as an SN. We use rules on the virtual
switch as filters. We install and uninstall the rules by in-
voking the OvS command line tools from a python script
that listens on the virtual switch raw socket. Upon seeing a
Narrow packet, it installs a filter and sets up a callback that
uninstalls the filter at t,,4. We use iperf on both the attacker
and the victim to transmit the attack traffic.

CS268, Jan-May 2021, Berkeley, CA

o000 | T ¥ 0.74x + 6.78e+05

740000

730000

720000

710000

Memory consumption (KB}

700000

690000

680000

0 20000 40000 60000 80000 100000
Number of filters

Figure 3: Number of OvS Filters vs. Memory Consump-
tion

4.2 Functional Verification

To verify that the Narrow protocol works in a basic attack,
we start 100 attacker hosts and 1 victim host. The attacker
hosts each have 100Mbit/s links connected to the SN, while
the victim host has a 1000Mbit/s link. Without Narrow, the
attackers oversubscribe the victim’s network in a 10:1 ratio.
After the attack starts, we manually trigger a Narrow client
on the victim to send Narrow packets targeted towards the
attackers. All Narrow requests had an end time 2 seconds
after the time that the packets were each sent. As seen in
Figure 2, the bandwidth reaches 0 after all filters are installed,
and bounces back up after all filters expired. In this experi-
ment, we did not trigger the victim to send another round
of Narrow packets. In a real world deployment, the victim
could have kept sending Narrow packets to keep all attackers
silent, or it could have randomly chosen a subset of attackers
to Narrow so that its bandwidth is not oversubscribed while
decreasing the risk of categorizing a legitimate customer as
an attacker. We envision a wide range of automated Narrow
clients that determine what hosts count as attackers and thus
need to be narrowed, but the specific strategy of such clients
is left as future work.

4.3 Filter Memory Consumption

We install many IP filters, each matching a different (source,
destination) tuple. We then plot the memory consumption
of the OvS daemon process. As seen in Figure 3, each filter
takes up a constant space of 700 bytes. This means a service
node with 16G assigned filter space can fit about 24 million
filters using OVS as the pipe terminus. If we assume each SN
services 1000 hosts, then each host can install 240K filters
on average. Since a Narrow filter is rather minimal, we think
there is a lot of space to optimize the memory taken up by a
single filter. However, as shown in later sections, memory is

CS268, Jan-May 2021, Berkeley, CA

not our bottleneck, so we curb our optimization enthusiasm
for now.

4.4 Filter Installation Throughput

OvS supports two modes of installing rules. For some num-
ber of rules we want to install, we can either invoke the
command line tool for each one, or batch up the requests and
invoke the tool once. We initially used the former method,
but found it unbearably slow - 18 seconds for 10000 filter
installations. Putting all the rules into a file and batch exe-
cuting it significantly increases performance, lowering the
run time down to 0.6 seconds. We think this performance
increase comes from fewer process spawns, and maybe query
optimization within OvS. In a real-world deployment, we
think batching should be used to speed up filter construction
at least on OvS. Furthermore, we think batching will be a
dynamic process based on traffic level and Narrow request
frequencies.

Despite drastic improvements over adding filters one-by-
one, batching filter construction time still limits our total
filter capacity more than memory. To install 240K filters (the
number of filters that can fit in 16GB of memory), we need
14.4 seconds. If we assume each filter expires in 5 seconds,
then the maximum number of active filters on an SN running
OvS would be 5/0.6 = 10000 = 83, 333 filters - about 83 filters
per host.

4.5 Filter Installation Delay

We tested how long does it take for a Narrow request takes
effect. We have two hosts, h; is flood-pinging h, while h;
makes a command line call to block the traffic. At t = Oms, hy
initiates the command line call, which finishes at ¢t = 3.2ms.
The last ping is at ¢t = 4.8ms. During the 4.8 milliseconds,
about 400 ping packets made it through to h;. Given that
OvS is only used as a prototype, we think we are not too
far off by choosing the end time in Narrow in the unit of
milliseconds, though we should definitely try to improve this
number in future work.

4.6 Filter Effect on Datapath Delay

We tested how the number of filters installed affects the de-
lay of the network. For every 10000 filters installed, we ping
from one host to another 20 times and report the average
round-trip time. As shown in Figure 4, the delay is relatively
constant throughout. We think this result is logical because
OvS uses hashing to match a given packet to the filters we in-
stalled, thus making the lookup time asymptotically constant
with respect to the number of filters.

Ziyao Zhang and Yichi Zhang

Datapath Latency (ms)

003 \/\,W\J—A

o 50000 100000 150000 200000 250000 300000
Number of filters

Figure 4: Number of OvS Filters vs. Datapath Latency

4.7 Experiment Summary

To briefly conclude, we have discovered the bottleneck of a
given SN’s filter capacity (running OvS) as about 83K per SN,
and this limit is due to how quickly we can install filters. We
also verified that the Narrow protocol is functional against a
simulated DDoS attack.

5 ATTACK SCENARIOS
5.1 Initial Response

Knowing how fast can we Narrow attackers is important.
A Narrow packet takes up about 202 bytes including L2
and L3 headers: we imagine the L3.5 header to contain a 8
byte L3.5 identifier and two 32 byte IPv6 addresses, and we
imagine the payload to be a 8 byte L3.5 identifier, two 32 byte
IPv6 addresses, and a 4 byte denoting the lower bits of t.,4.
Assuming a victim has an upstream bandwidth of 10Mbps,
and the victim is not bottlenecked by attacker classification,
the victim can send out about 6,500 Narrow packets per
second. According to the report on the 2018 GitHub DDoS
attack [7], “tens of thousands” of end points were involved.
This means the victim can send out a Narrow request to each
one of them within about 6 seconds if we assume 40,000
attackers.

5.2 Replay Attack

Replay attacks are initiated by an on-path adversary by send-
ing a series of packets it has seen before as an attempt to
impersonate the original sender. This is not a problem within
Narrow because Narrow packets are idempotent (i.e. the ef-
fect is the same no matter how many Narrow packets are
received by an SN) due to t.,4 being absolute. Furthermore,
given that the connections between Host-SN and SN-SN are
backed by tunnels that guarantee integrity and authenticity

Narrow - Distributed DDOS Prevention on El

of the messages being transmitted (see section 2.1), any mod-
ifications to those messages will discovered. Therefore, we
believe that Narrow is not prone to replay attacks.

5.3 Spoofing (Using Narrow to DDoS)

5.3.1 Host Address Spoofing. Host address spoofing refers
to a malicious host attempting to send a Narrow packet using
an addry that it does not own. Given that all hosts need to au-
thenticate with their SN before receiving EI service, the SNs
directly serving a host have the authoritative information on
whether a Narrow packet is spoofed. As long as they don’t
allow host address spoofing (which we outlined in section
2.1), Narrow is not prone to this problem.

5.3.2 SN Route Spoofing. SN route spoofing refers to a
misconfigured or malicious SN claiming to service a set of
host addresses (in an L3.5 address space) that it does not
have the authority of servicing. This could lead Narrow into
forwarding a Narrow request to a wrong SN or trusting a
Narrow packet when it shouldn’t. We argue that since Nar-
row have no control over how the address space of a given
L3.5 service is partitioned between SNs or SNPs, the best
that Narrow can do is to ask the protected L3.5 of its address
space partitions, hence the requirement of prev_SNs(addr)
to be implemented by the protected L3.5s. Furthermore, since
SNPs all directly peer with each other, we argue that for an
address space partitioned to SNPs and have partitions that
change slow enough (much like IP addresses partitioned
to ASes), prev_SNs(addr) could simply be a static lookup
while providing good protection to SN route spoofing.

5.4 Filling up Filter Space of Attacker SN
(DDoS against Narrow)

According to our experimental results in section 4, the num-
ber of filters available on SN, is about 83 per host. This
means that in the worst case where all the hosts on an SN
are compromised, each host need to annoy 83 victims so
that they all send a Narrow packet to SN4 before launching
the attack against the actual target. Since 83 is not a huge
number, this is would make Narrow useless if it worked. To
defend against this attack, the Narrow protocol stipulates
that SN should verify whether an attacker has actually been
sending enough traffic to the victim in the past. We now
strive to answer the question of to choose this bandwidth
threshold.

Let b bits/s be the average bandwidth of a single com-
promised attacker host without Narrow being available on
EI, bn bits/s be the amount of bandwidth available to that
attacker with Narrow being available, f be the number of
filters available per host on SN4, and x be the proportion of
bandwidth that the attacker needs to spend on the victim

CS268, Jan-May 2021, Berkeley, CA

for SN, to grant the victim Narrow permission on the at-
tacker. This means if the attacker sends more than xb bits/s
to the victim, the attacker will be prone to Narrow, where
0<x<1

If the attacker decides to simply send below the rate of
xb bit/s to avoid being Narrowed, then we obtain an lower
bound on by (it’s an lower bound here because we know the
attacker can at least use this much bandwidth by exploiting
Narrow):

by > xb

If the attacker decides to annoy some victims and attempt
to fill up the Narrow filter capacity at SNy, then the attacker
needs to send to f victims using xb bits/s each. This leaves
the attacker b — fxb = (1 — fx)b bits/second to perform the
actual attack. Thus, we obtain another lower bound on by:

by > (1- fx)b

We want to choose x so that the maximum bandwidth
available to an attacker through either method is minimized:

argmin max(xb, (1 — fx)b)

1
f+1

Although this is not an exhaustive analysis, we have thus
proven that in a particular attack scenario the number of
filters inversely corresponds to the bandwidth available to
an attacker. There is probably some leeway to set x signifi-
cantly lower if the probability of all the hosts on an SN being
compromised is low.

X =

6 ECONOMIC ANALYSIS

6.1 Deployment Incentives

For datacenters and cloud providers, deploying Narrow on
their SN allows both tenants and themselves to Narrow at-
tack traffic, thus saving both money. Given the great network
visibility brought by the large scale of some cloud providers,
they can even provide better service to differentiate them-
selves from the competition by automatically Narrowing an
attack so that their clients won’t have to. Last but not least,
cloud providers can avoid some of the liability and limit the
damage in case some of their hosts get compromised and
start sending DDoS traffic.

For ISPs, they benefit from saving traffic cost. When a
downstream service node forwards a Narrow request, the
ISP service node can block the traffic at its first hop, thus re-
ducing the load of their backbones and potentially providing
better services to their customers.

For content providers and end users, the Narrow protocol
is strictly beneficial. For both, they benefit from a free DDoS
protection mechanism built into the Internet. Furthermore,
an end-user’s computer becomes less valuable to attackers,

CS268, Jan-May 2021, Berkeley, CA

which could decrease the incentive for attackers to compro-
mise devices.

Globally, the benefit Narrow brings is straightforward: the
duty of reducing garbage traffic is laid out to the very corners
of the entire Internet. This effect is beneficial to everyone
except the attackers: service providers no longer need to seek
DDoS protection from a third party, users can worry less
about their host sending out traffic leading to an increase
in their Internet bills, ISPs will have less traffic travelling
across their backbones, and datacenter servers should have
less garbage pounding on their ports to process. Every party
have the incentive to deploy Narrow.

6.2 Incremental Deployability

Although we certainly hope that Narrow get to be one of
the pre-installed protocol when EI rolls out, it might need
to start from a few and expand, and thus we designed the
Narrow protocol with incremental deployability in mind.
First, unlike previous proposals, EI does not require a trusted
component on the attacker host. Second, hosts have an easy
way to figure out which networks have Narrow enabled -
they can send a Narrow packet to see if attack traffic from the
target source has stopped. Third, the effectiveness of Narrow
scales linearly with the number of attackers served by an
SN supporting Narrow. As long as the SNs supporting the
protocol keeps increasing, end users will enjoy better DDoS
protection without explicitly taking action, which should
propel more and more SNPs to adopt Narrow.

7 SCALING NARROW

In previous sections, we considered the simplified case where
each SNP only has one SN. In this section, we consider how
to scale Narrow to Internet scale. We use a similar convention
as before, where we denote the service node provider that
provides service (unknowingly) to the attacker as SNP4 and
the SNP that provides service to the victim as SNPy.

7.1 Address Wildcards

While we described Narrow from an end-to-end perspective
up till this point, we do not intend Narrow to be a pure end-
to-end protocol. In fact, we believe that SNPs should have
the ability to Narrow unwanted traffic for their clients with-
out the client initiating the process. Given that SNPs have a
complete view of their network, they have the potential to
make better decisions on which hosts could be categorized
as attackers. However, the large scale of some of the SNPs
now becomes a problem. If an SNP wants to protect all of
its clients, it would be really cumbersome to send a Narrow
packet on behalf of each client. Therefore, we propose that
Narrow should support wildcards in addry. However, wild-
cards in addry are reserved for service node providers (SNPs)

Ziyao Zhang and Yichi Zhang

and large customers with special arrangements with SNPs
because a host should not be able to Narrow traffic on behalf
of other unrelated hosts under the same SNP.

7.2 Routing & Route Verification

Given that more than one paths are available from SNy to
SNy, there is a question on which path should SNy choose
to forward the Narrow packet. Furthermore, the attacker
host may not be connected to just one SN4, but could be
connected to more than one SNs or even SNPs. Although
there are no transit SNPs in the EI architecture, with more
than one SN in one SNP, SN is no longer directly connected
to SNy. As a consequence, SNy may not know the addresses
of SN4, only where to send a packet that gets it one hop
closer. We propose that for each attacker-connected SNP4,
SNy could choose any edge SN that belongs to SNP4 and
forward the Narrow packet to that SN. This edge SN can
then broadcast the Narrow packet to all SN4s within its own
SNP. This does imply that SNPs typically shouldn’t allow a
client to use any SN and will instead assign a set of SNs that
a client is allowed to use, so that SNP4s could avoid having
to broadcast every Narrow request to every SN.
Implementation-wise, instead of a list of possible SNs that
a packet could have been transmitted from, the return value
of prev_SN(addr) can also include SNP specifiers or SN ad-
dress wildcards so that verifying a Narrow packet is quicker.
We leave a precise specification for both of the SNP specifier
or SN address wildcards to the EI reference implementation.
next_SN(addr) also needs to be slightly modified. Instead
of returning just one next-hop SN, it should return a list of
next-hop SNs, with each SN being from a different SNP,.

8 RELATED WORK

There have been a lot of efforts to defend against DDoS.
The first paper that proposed the idea to send explicit pack-
ets to request a bandwidth limit is Active Internet Traffic
Filtering (AITF) [2]. AITF operates between the gateways
of both the traffic recipient and the traffic sender. When a
recipient wants to shut up a sender, it tells this intent to its
gateway. Then, the recipient’s gateway initiates a three-way
handshake with the sender’s gateway to block the sender’s
traffic. The problems of AITF as we see include 1) AITF only
offers to block the traffic and suggests a minute-scale block,
increasing the risk of shutting up legitimate hosts, and 2)
AITF requires both end-hosts to support AITF: without a
timely reaction from the host being blocked, the gateway
will disconnect the host. We alleviate the first problem by
suggesting the effective time to be second-scale. For the sec-
ond one, we are basing our protocol over EI, therefore we
do not need any support from the Narrowed host.

Narrow - Distributed DDOS Prevention on El

ShutUp: End to End Containment of Unwanted Traf-
fic [5] is another attempt that requires support from both
end-hosts - one of which is supposedly sending malicious
traffic.

Accountable Internet Protocol (AIP) [1] is a more general
approach towards the malicious activities. AIP thinks the rea-
son for these attacks is the un-accountability of the Internet,
and it proposes an accountable Internet by combining public-
key cryptography and a two-layered addressing scheme so
that it is harder to spoof addresses - the source of a large part
of malicious activities. We think that AIP introduces a lot of
overhead in terms of both header size and processing time:
ATP header contains a standard IP header plus more than 120
bytes, and it is well known that public-key cryptography is
not a fast process. AIP also requires both end-hosts to have a
smart NIC and be cooperative, which is not always the case
within this context.

9 ACKNOWLEDGEMENTS

We want to thank James McCauley, Sylvia Ratnasamy, Au-
rojit Panda, and Scott Shenker for providing feedback on
an early version of Narrow. We are also grateful for Sylvia
and CS268 in providing us both an opportunity and the AWS
credits for working on this project.

REFERENCES

[1] David G. Andersen, Hari Balakrishnan, Nick Feamster, Teemu Kopo-
nen, Daekyeong Moon, and Scott Shenker. 2008. Accountable Internet
Protocol (Aip). In Proceedings of the ACM SIGCOMM 2008 Conference
on Data Communication (SIGCOMM °08). Association for Computing
Machinery, New York, NY, USA, 339-350. https://doi.org/10.1145/
1402958.1402997
Katerina Argyraki and David R. Cheriton. 2005. Active Internet Traffic
Filtering: Real-Time Response to Denial-of-Service Attacks. In Proceed-
ings of the Annual Conference on USENIX Annual Technical Conference
(ATEC °05). USENIX Association, USA, 10.
[3] Hari Balakrishnan, Sujata Banerjee, Israel Cidon, David Culler, Debo-
rah Estrin, Ethan Katz-Bassett, Arvind Krishnamurthy, Murphy Mc-
Cauley, Nick McKeown, Aurojit Panda, Sylvia Ratnasamy, Jennifer

—
oo
—

[4

—

5

[

G

—

[7

—

8

—

[9

—

[10]

[11]

CS268, Jan-May 2021, Berkeley, CA

Rexford, Michael Schapira, Scott Shenker, Ion Stoica, David Tennen-
house, Amin Vahdat, and Ellen Zegura. 2021. Revitalizing the Public
Internet by Making It Extensible. SSGCOMM Comput. Commun. Rev.
51, 2 (May 2021), 18-24. https://doi.org/10.1145/3464994.3464998
Vivek Ganti and Omer Yoachimik. 2021. DDoS attack trends for 2021
Q1. (04 2021). https://blog.cloudflare.com/ddos-attack-trends-for-
2021-q1/

Saikat Guha, Paul Francis, and Nina Taft. 2008. ShutUp: End-
to-End Containment of Unwanted Traffic. Technical Report
http://hdLhandle.net/1813/11101. https://www.microsoft.com/
en-us/research/publication/shutup-end- to-end-containment-of-
unwanted-traffic/

Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass,
Nicholas H. Briggs, and Rebecca L. Braynard. 2009. Networking Named
Content. In Proceedings of the 5th International Conference on Emerging
Networking Experiments and Technologies (CONEXT °09). Association

for Computing Machinery, New York, NY, USA, 1-12. https://doi.org/
10.1145/1658939.1658941

Sam Kottler. 2018. February 28th DDoS Incident Report. (Mar 2018).
https://github.blog/2018-03-01-ddos-incident-report/

Bob Lantz, Brandon Heller, and Nick McKeown. 2010. A Network in a
Laptop: Rapid Prototyping for Software-Defined Networks. In Proceed-
ings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks
(Hotnets-IX). Association for Computing Machinery, New York, NY,
USA, Article 19, 6 pages. https://doi.org/10.1145/1868447.1868466
James McCauley, Yotam Harchol, Aurojit Panda, Barath Raghavan,
and Scott Shenker. 2019. Enabling a Permanent Revolution in Inter-
net Architecture. In Proceedings of the ACM Special Interest Group
on Data Communication (SIGCOMM ’19). Association for Comput-
ing Machinery, New York, NY, USA, 1-14. https://doi.org/10.1145/
3341302.3342075

Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J. Jackson, Andy Zhou,
Jarno Rajahalme, Jesse Gross, Alex Wang, Jonathan Stringer, Pravin
Shelar, Keith Amidon, and Martin Casado. 2015. The Design and
Implementation of Open VSwitch. In Proceedings of the 12th USENIX
Conference on Networked Systems Design and Implementation (NSDI’15).
USENIX Association, USA, 117-130.

Jon Porter. 2020. Amazon says it mitigated the largest DDoS attack
ever recorded. (06 2020). https://www.theverge.com/2020/6/18/
21295337/amazon-aws-biggest-ddos-attack-ever-2-3-tbps-shield-
github-netscout-arbor

https://doi.org/10.1145/1402958.1402997
https://doi.org/10.1145/1402958.1402997
https://doi.org/10.1145/3464994.3464998
https://blog.cloudflare.com/ddos-attack-trends-for-2021-q1/
https://blog.cloudflare.com/ddos-attack-trends-for-2021-q1/
https://www.microsoft.com/en-us/research/publication/shutup-end-to-end-containment-of-unwanted-traffic/
https://www.microsoft.com/en-us/research/publication/shutup-end-to-end-containment-of-unwanted-traffic/
https://www.microsoft.com/en-us/research/publication/shutup-end-to-end-containment-of-unwanted-traffic/
https://doi.org/10.1145/1658939.1658941
https://doi.org/10.1145/1658939.1658941
https://github.blog/2018-03-01-ddos-incident-report/
https://doi.org/10.1145/1868447.1868466
https://doi.org/10.1145/3341302.3342075
https://doi.org/10.1145/3341302.3342075
https://www.theverge.com/2020/6/18/21295337/amazon-aws-biggest-ddos-attack-ever-2-3-tbps-shield-github-netscout-arbor
https://www.theverge.com/2020/6/18/21295337/amazon-aws-biggest-ddos-attack-ever-2-3-tbps-shield-github-netscout-arbor
https://www.theverge.com/2020/6/18/21295337/amazon-aws-biggest-ddos-attack-ever-2-3-tbps-shield-github-netscout-arbor

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Background on Extensible Internet (EI)

	2 Protocol Design
	2.1 Trust Model
	2.2 An Important Assumption
	2.3 Narrow Protocol

	3 Protocol Implementation
	3.1 EI Implementation
	3.2 Filter Installation
	3.3 Packet Routing

	4 Experimental Results
	4.1 Experiment Setup
	4.2 Functional Verification
	4.3 Filter Memory Consumption
	4.4 Filter Installation Throughput
	4.5 Filter Installation Delay
	4.6 Filter Effect on Datapath Delay
	4.7 Experiment Summary

	5 Attack Scenarios
	5.1 Initial Response
	5.2 Replay Attack
	5.3 Spoofing (Using Narrow to DDoS)
	5.4 Filling up Filter Space of Attacker SN (DDoS against Narrow)

	6 Economic Analysis
	6.1 Deployment Incentives
	6.2 Incremental Deployability

	7 Scaling Narrow
	7.1 Address Wildcards
	7.2 Routing & Route Verification

	8 Related Work
	9 Acknowledgements
	References

